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by

E. Lewis

Applied Physics Division
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Argonne, IL 60439

ABSTRACT

The two—dimensional discrete—ordinates extension of the Argonne
National Laboratory neutron diffusion code DIF3D is described. The
discrete—ordinates extension is incorporated into x—y, r—z and
triangular geometries. Only those sections of DIF3D dealing with
the within—group scalar flux calculations are modified. The
extension includes two features which facilitate the conversion from
diffusion to discrete ordinate computations. An isotropic transport
correction insures that results are compatible with anisotropic
diffusion theory, and the use of two—cyclic overrelaxation allows
the retention of the diffusion iteration and acceleration techniques
in the discrete ordinates extension. Derivation of the discrete
ordinates equation is included for each geometry along with
discussions of the solution algorithms and of other program informa-
tion relevant to the discrete ordinates extensions.

*Work supported by the U.S. Department of Energy.
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The DIF3D Transport Extension for Discrete Ordinates
Neutronics Calculations in Two Dimensions

I.	 INTRODUCTION

Multigroup diffusion theory is the most widely used transport approximation
for performing fast reactor neutronics analysis. At Argonne National Laboratory
such calculations are performed in one, two or three dimensions using the
DIF3D code. 1 , 2 In a variety of circumstances, however, accuracy requires that
diffusion theory be replaced by a higher — order transport method such as the
discrete ordinates or S N method. This may occur, for example, in the analysis
of the flux gradients in heterogeneous cores, and in the analysis of control
rod behavior.

To serve this need a two—dimensional transport extension to DIF3D has
been written. In doing this care has been taken to minimize the number of
changes that a user must make in converting the input files from diffusion to
transport calculations. In particular, the same cross sections and diffusion
coefficients are used in the diffusion and transport calculations. In most
cases the user need only insert one additional piece of information: the SN
order.

Consistent with this objective, only the within—group calculations of
DIF3D are modified. The transport extension uses the group source and boundary
conditions from DIF3D, replaces the diffusion with a S N calculation of the
within—group flux, and returns the group scalar flux to DIF3D. Thus the outer
iteration strategy and the data handling required for the group sources are not
touched. Likewise all of the necessary cross sections for the within—group
transport equation are obtained from the diffusion coefficients and removal
cross section data by making the assumption of isotropic scattering in the
laboratory system. In the case that anisotropic diffusion coefficients are
supplied, the transport equation is modified by an angular multiplier 3 , 4 to
yield results that are consistent with anisotropic diffusion theory in the
limit that PI theory is valid.

The transport and diffusion versions of DIF3D use the same acceleration
parameters and convergence criteria. This is accomplished by retaining the
two—cyclic optimized overrelaxation technique used in the diffusion calculations
for the transport extension. This is possible through the use of an up—down
iteration scheme5 for the within—group calculations.

The two—dimensional S N extension for DIF3D is available in x—y, r—z and
triangular geometries. It uses standard SN quadrature sets that are included
in the code for S 2 through S 16 for the x—y and r—z geometries. In the
triangular geometry option six—fold symmetric S 2 through S 8 quadratures are
Included.

In the following sections, we first state the forms of the within—group
transport equations that are used. A brief discussion is given of the unique
anisotropic transport technique that is included in the code, and the discrete
ordinates approximation is introduced. After a discussion of the iterative
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solution procedures, the details of the spatial differencing methods are
presented. Computational results are given for a number of benchmark problems,
and the report is concluded with user information on input and programming.

II. DERIVATION OF TRANSPORT EQUATIONS

11.1. The Within—Group Transport Equation

Given a group source Q(;) and some combination of vacuum and
reflected boundary conditions, the transport equation may be written as

4 ( i. 1) + E(;)T(i',:1) = E,(;)(1)(;) + 4(;), 	 (1)

where T is the angular flux, and the scalar flux is given by

g;) = JE2T(,i:).

In what follows we use the normalization

jdc2 = 1.

The boundary conditions are given by

- -	 -1.

T(;,) = 0:	 0•n<0, r E rv,

^
on the vacuum boundaries, where n is the outward normal, and

T(1: , Ŝ/) 	 =	 T(;,S^1')

^
on the reflected boundaries, where 0 is the angle of reflection corresponding

to the incident angle W. Since no confusion should result, we have deleted
the group index.

The within—group scattering and total cross sections, E and Es,

are determined from the standard relationships for the removal cross section

+
r e r

r

(2)

(3)

(4)

(5)

E
r
 = E — E

s	(6)
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and the diffusion coefficient

- 3£
	

(7)

Inverting these expressions, we obtain

E - 3D

_ 1
	

(8)

and

_ 1	
(9)

- 3D - Er.

Consistent with the use in diffusion theory, a buckling approximation to the
transverse direction leakage may be included by adding a DB 2 term to the total
cross section in Eq. (1).

In the case that anisotropic diffusion coefficients have been
provided, the situation is somewhat more complicated. These coefficients
arise from the homogenization of slab or pin lattices. Since in both the
transport and diffusion version of DIF3D homogenized cross sections are used,
the anisotropic homogenization appears as an angular multiplier in the transport
equation. The theory of these multipliers has been worked out elsewhere.3,4
The transport term in Eq. (1) is multiplied by an angular multiplier to yield

= Es(*)(0() 
	

(10)

where g(p) is chosen such that if a PI approximation is applied to Eq. (10)
a diffusion equation will result with the Benoist definition of the anisotropic
diffusion coefficients.

In x-y geometry, with a slab lattice, p is the direction cosine of

a with respect to the direction perpendicular to the slab. In r-z geometry p

is the direction cosine of a with respect to the z axis. No anisotropic
correction exists in the hexagonal option of the transport code. In the x-y
option the slabs must be parallel to the z axis. In the r-z option slabs
parallel or perpendicular to the z axis can be treated, as well as pins
perpendicular to the z axis. In x-y geometry pins or slabs perpendicular
to the z axis would appear as isotropic transport in the x-y plane. We
shall return to these points after the discrete ordinates approximation has
been applied to Eq. (10). Then, the multiplier g(p) is expressed in terms of
the anisotropic diffusion coefficients.

11.2. The Discrete Ordinates Approximation

Formulation of Equations 

To obtain a discrete ordinates approximation, Eq. (10) is evaluated

at each of a number of values a n of the angular variables:
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nfl	
Tn (P) + Ec	 = E s (=)	 + Q6),

where

n
(;)	 T(;,:2n

).
	 (12)

The scalar flux is approximated by a quadrature formula taken over the discrete

ordinates:

0(;)	 = E w(),
wherewhere the ware the quadrature weights corresponding to the directions n

.

(13)

Likewise, Eq. (4) and (5) are replaced by

n(;)	 =

and

n ( -;)	 =

0; 2
n

*1-1<0,	 r	 er
v

e	 F r ,

(14)

(15)

where
n
 is the reflective direction corresponding to the incident direction 2

n'
.

Determination of Discrete Ordinates 

For two-dimensional transport, the 0_ are chosen over four of the

eight octants of the unit sphere defined by 2. We consider the orthogonal co-
ordinate systems (i.e. x-y and r-z) first. For a SN approximation, a
symmetric quadrature set is chosen in each octant as follows. 7 A set of N/2
positive direction cosines is generated in a manner such that there are
(N+2)*N/8 per octant, each with the N/2 values of the direction cosines with
respect to each of the three axes. This is shown for the S 8 approximation
in Fig. 1. Thus for two-dimensional geometries there are (N+2)*N/2 directions.
These possess mirror symmetry about the three orthogonal planes. Thus for
reflected boundaries, if the angle of incidence is in the quadrature set, so
also will be the angle of reflection. As shown elsewhere 7 , once the first
direction cosine is chosen, the remaining ones are determined by the symmetry
conditions. Likewise, the requirement that the quadrature weights be invariant
for rotations about any of the axes imposes symmetry conditions on the wn.

In the DIF3D x-y and r-z transport options, the quadrature formulae are the
ones used in the TWOTRAN 8 and TPT 8 codes. The quadrature weights and ordinates
are reproduced in Appendix A.

In the triangular option, the unit sphere is divided into twelve parts,
and in two dimensions the discrete ordinates are defined over six of these.
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Fig. 1. Level Symmetric Ordinate Set
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Within each such sector of the hemisphere there are (N+2)*N/8; discrete
ordinates chosen to have mirror symmetry across the three planes on which
reflected boundaries may be imposed. Thus in all there are (N+2)*3*N/4
directions for which the transport equation must be solved for two-dimensional
triangular problems. In DIF3D the quadrature sets from the DIAMANT2 113 code

are used.

Treatment of Anisotropic Transport

The most obvious way to evaluate the angular multipliers in
Eq. (11) is to set

gn = g(Cin).
	 (16)

This, however, is problematical. For in both x-y and r-z geometry g(4) has
only small deviations from the isotropic case except at one or the other
endpoints of the range of 4. This is illustrated in Fig. 2a and 2b in x-y and
r-z geometry, respectively, for a slab lattice in which the coolant channels
have been partially voided. Thus if Eq. (16) were to be used most of the
anisotropic effect would be lost except in the case of very high order SN
approximations.

To circumvent this problem, an angular moments method is used3,4
that guarantees that in the diffusion limit S N approximations for N>2 will
yield the anisotropic diffusion equations with Benoist coefficients. The
results of this technique are as follows.

For x-y geometry 3 let

0<4
1
<4

2
<...<4

N/2	(17)

be the values of the direction cosine with respect to the axis perpendicular
to the slabs. Then

2 	 1 

	

(
1	 2

) 
2D1	 2	 4	 2 ) DIg1

1	 w(1 - 344)( ( 3
	

ww
 1	 D	 w	 '44 1' D1

and

2	 11(1 _ 4 2 ) Di _
gn - (1 - -T. 2.1 .7	 1 D	 "15	 n = 2,3,...,N12.

1

In these expressions Dm and Di are the diffusion coefficients parallel and

perpendicular to the slabs, respectively, and D is defined as in Eq. (7). The
weight w is the sum of all the weights for the directions having values of

2 '1 =
1.

(18)

(19)
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Tri (;,)	 =
Xn(r);

Cin.j ) D'

C2n .j < D

(23)
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For r-z geometry 4 u is taken as the direction cosine with respect
to the z axis, again ordered as in Eq. (17). The multipliers are now given by

and

2
gn

2
gN /2

1 [-.2
2 D

r

-
w

(1
-2
u

)

D l
z

)
	IT)

Dz

'

1
e

n - 1,2 	

--2
- wW )

2 D
r
]

2

•

- 
1 (20)

(21)

-2
(3u	 -	 1)

1 [ 2(
3-	 -2

w(3w	 - 1) 

-
where u = uN/2' and w is the weight corresponding to the direction with ;-1 the

largest magnitude direction cosine with respect to the z axis. Here three
cases must be considered. For pin lattices D z is parallel to the pins and Dr

is perpendicular to them. For slabs perpendicular to the z axis, Dr is parallel

to the slabs and D
z
 is perpendicular to them. Finally, for slabs parallel to

the z axis D
z
 = D

and

1
D
r =
	 (D + D1 ).

11.3. Iteration Strategy

To allow the optimized two-cyclic overrelaxation method used for
diffusion calculations with DIF3D to be retained, we have modified the up-down
iteration strategy developed by Hageman for the TPT code. 5 , 9 While TPT
accelerates the within-group iterations by Chebyschev polynomials, we use
optimized overrelaxation.

To implement the two cyclic iterations the angular flux is divided
into "up" components Yn and "down," components xn:

(22)

In x-y or triangular geometry j denotes the y axis, while in r-z geometry it is
the z axis. With three definitions Eq. (11) may be written as

"
gnQn . Vyn "yn = Es g)1. "510- +Q;
	

Q•j>0

and
	

(24)

gnQn .hn + Ex n = I s (0 4. + I s .- +
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where the upward and downward components of the scalar flux are defined as

,+(;) = E w (;)nn
Qn•j>0

and

(1)21") =	 E	 )(it).n
Qn.j<0

The two cyclic iteration is then given by

gn f2n .VXn 	E Xn	 Es(0_ = E s ,k, 	 Q;

^r2.	 -X	 X+1
goRn . y n + yn - E s y+ = Zs o_	 + Q;	 Sin •j<0

If Gauss-Seidel iteration is used, then

Z+1	 -X 4.
*n (r) = '11(r)

and
	

(27)

1+1+
X,	 = xn(r),

while overrelaxation is used

,r 1 ( ; ) = z; [ ;;', ( ; ) -	 i( ; ) 1 	rx,(;)
and
	

(28)

X:+1 ( ;) = (7)( ";(;) - 41(;)] 

Since the foregoing equations are two-cyclic, the optimum overrelaxation factor
w can be estimated for each energy group in the same way as for the diffusion
equation. The spectral radius of the iteration matrix resulting for the spatial
discretization of Eqs. (26) and (28) is determined with w=1, and the optimum
overrelaxation factor is determined by a standard procedure. The convergence
of the discretized equations has been proven (for g=1) provided there is at

least one vacuum boundary and has been shown numerically to converge for gnil.

For all reflected boundaries Gaus-Seidel iterations (t7;=1) must be used for in
most cases the overrelaxation procedure diverges.

In the spatially differential forms of Eq. (26) one iteration consists of

a down sweep in which Xn is determined for all x (or r) for decreasing values of
y (or z). If there are reflected boundary conditions along the lower boundary

(25)

fln•j<0

(26)



*n(; )	 Xn()

in order to initiate the upsweep. Equation (28) is applied to the xn before

initiating the upsweep. The upsweep is carried out to determine the values of

lyn(i) for all x(or r) successively increasing values of y(or z). Equation (28)

is applied to overrelax tpn , and the boundary values are saved to initiate the

next downsweep.

At each level of y(or z) equations of the form

rz.R.
g "	nn' "*n "n	 =

and

"

gnQn .7Xn	EXn 	 S-

must be solved, where

S	 = Es 1)1. + Q
	

(32)

and

S+	
1,50X+1 +
	

(33)

are known from the previous up or down sweep. To solve these equations an

inner-inner or line iteration is used to determine the values of 	 and 7'C' along

a line of fixed y(or z). Before this inner level of iteration can be discussed
however, the spatial differencing must be applied to the transport equation.
Differencing requires that each of the three geometries be treated separately.
However, a few general remarks concerning the grid structures are in order.

The transport extension, like the DIF3D diffusion code, utilizes cell
centered grids; the angular and scalar flux values are calculated and stored
at the center of x-y, r-z or triangular cells, each with uniform cross sections.
Typical cells for the three geometries are shown in Fig. 3 in the r-z cell
center line is denoted by r 119 = 0. The cross sections are piecewise constant

with changes allowed only along cell boundaries (i.e. at the half integer
values in x-y and r-z geometry and along the triangle sides in hexagonal
geometry).

Since the structure of Eqs. (26) are so similar to one another, we develop

only the difference equations for the upsweep 1-1-)11 . We delete the iteration
superscript for brevity and write

gnS1 r1.4n	 -	Es+ = S+	(34)

—10--

E 
rr
	 (29)

S+ (30)

(31)
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as our starting point for each of the three geometries. In all three
geometries diamond differencing 7 is used without negative flux fixup.

11.4. x-y Difference Equations

The discrete ordinates equations for * n in x-y geometry are

3	 3
[gnu — + g n	 + E(x,y)]*n(x,y) = s(x,y).

n ax	 n n 3y

where

S(x,y) = E s E wn* n(x,y) + S.1.(x,y)
ii

n
>0

and

ii	 ;nn	 = C20.i"

Spatial Differencing 

We divide the x-y domain into cells bounded by x
1/2' x312,—xI+1/2

and v1/2' Y3/2"..'YJ+1/2 as shown in Fig. 4. The cross sections are taken
' 

to be piecewise constant, and can change values only at the half-integer boun-
daries in x and y. Within the cell they have the values E.., I.., for example.

sij

j+1/2

To derive difference relations for the i,j cell we integrate
Eq. (35) over x. 1/2 < x < x i+112 and y._j 1/2 < y < y.	 . We have

g	 f - dY[4'n (x i+1/2' Y)	 n(xi-1/2'5°1 + g
nn nf idx[* n (x 1/2 ) - * n (x,y._	 )1n n

+ I •f dxf dy* (x,y) = f dx f dy S(x,y),	 (38)ij	 j	 n 

where we have used the abbreviations

	

x.+112
	 Yi +1/2

f dx a f dx	 ;	 f . dy a f dy	 .	 (39)

	

x11/2	
Yj-1/2

We further simplify notation by denoting

6xi = xi+1/2 - xi-1/2
	 (40)

(35)

(36)

(37)

AY. 
"'j+1/2	

Y
j-112 

•	 (41)



Axi

Xi"
x.

 Xi+,

Fig. 4. Grid in x— y Geometry
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Then we may define the fluxes averaged over the cell edges and area

respectively as

1
*n,i+1/2,j f dY*n(xi+1/2' Y)A .Yj

*	 = -1- f dx* (x,y.	 )
n,i,j+1/2	 Axi	 n	 j+1/2

4,11ij = 	  f dxf dyipn(x,y)
J j	 j

and

Qij	 1 	 f dxf dyS(x,y).

	

Ax i Ay	 j

Hence, dividing Eq. (39) by Axi Ayi we obtain the spatial balance equation

Ax n (*n,i+1/2,j	 *n,i-1/2,j)	 A
yi 

"ni,j+1/2	 *ni,j-1/2 )	 E ij*nij = Qi.j*

(46)

Equation (46) contains no spatial approximations. Along with this expression
of neutron balance, we require two auxiliary relations to relate the cell
average to the cell edge fluxes. The diamond difference approximation is7

1/24n,i+1/2,i*nij	 *n,i4/2,j)
(47)

*nij	 =	 1124 ni,j+1/2	 *ni,j-1/2).
(48)

For each case the diamond difference relationships are used as follows:

; .i
n
	>0,

*n,i+1/2,j	 =	 2 *nij	 *n,i-1/2,j

;	 un 
<0,*n,i-1/2,j	 =	 2 *nij	 *n,i+1/2,j

*ni,j+1/2	 =	 2 *nij	 *ni,j-112	 ;	
n
n 
>0.

(49)

(50)

(51)

(42)

(43)

(44)

(45)
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* ni , j -1/ 2 =	 ni j	 ni , j+1/ 2	
;	 n n < 0•
	 (52)

In each of the octants the appropriate pair of these equations is combined with
Eq. (46) to obtain the necessary differenced equation. For the octant 1.1 41 > 0,
n n > 0. Equations (49) and (51) are used to eliminate IP	 and tP n.,n,i+1/2,j	 j+1/2
from Eq. (46). We then have, upon solving for 4) nij ,

2 gnw n	 2
gnnni-ir2A:nijn	..E . + 	 	

2 gnn n=[*nij	 ij	 X. 	 Ay	 Sij;L	 1	 Yj

p n > 0, n n > 0.	 (52)

Likewise, for the octant i n < 0, n n > 0 we obtain

,	 4. 2 gnI P nl .4. 2 g nI n1 -2 1-2 gnIwnl	 2 gnn
'Y nij	 ij	 Axi	 A .	 L Ax	 *n,i-1-1/2,j+A.n*n,i,j-1/2 	 S i .j ;yj	 yj

Pn < 0, nn > 0.	 (53)

With these equations the procedure for upsweeping the grid shown in Fig. 4 may
be explained in more detail.

Solution Algorithm

Performance of the upsweep constitutes a solution of Eq. (49) through
(53), where the scattering source is written in the difference form

S = Z .Ew* . + Sij	 sij	 n nij
	 (54)

n n>0

The upsweep source S.Fii is considered known since, as indicated in Eq. (33),
it consists of the group source and the cp_ (downward) component of the scalar
flux, which was calculated on the preceding downsweep.

We consider first the case of vacuum boundary conditions at the lower
boundary

* ni,1/2 = 0;
	

n n >0
	

(55)

and on the left and right boundaries:

n,1/2,j = 0;
	 n > 0

fl

= 0;	 pn <0n,I+1/2,j

(56)

(57)



The upsweep proceeds by calculating the angular flux successively on the lines
The values at y 112 are known from

Y 1' Y3/2' Y2 —Yj-112' Yj,  
Eq. (55). Once the values along a line of cell centers (i.e. at y j ) have been

calculated, the diamond difference relationship Eq. (51) is used to calculate

the values at 
yj+1/2 

in terms of those at y. and y
1/2

.	 . Thus we need concern

ourselves only with the solutions of the pairs of Eqs. (49) and (52), and with

(50) and (53), where *
ni,j-1/2 

in these equations have already been determined.

Equations (52) through (54) are solved iteratively using an "inner-inner"
or "line" iteration. The line iteration is initiated by guessing the first
term on the right of Eq. (54) on the very first upsweep, and using the value
calculated from the previous upsweep thereafter. After each line iteration
the first term in Eq. (54) is updated until convergence of S. 	 within some

specified maximum pointwise error is obtained.

Each line iteration consists of the following. The angles are divided
into pairs for which p n , = -p n and n n , = n n , where n n > 0 and p n > O. Starting

at the left hand boundary, Eq. (56) is used in Eq. (52) to solve for * nlj
Then Eqs. (49) and (52) are used alternately to march to the right solving
successively for *	 , .	 ....*	 Similarly using

n,3/2, *j n2j	 n,I-1/2,j *nIj*n,I+1/2.
Eq. (57) in Eq. (53) we may solve for *n , I,j . Then Eq. (50) and (53) are used

alternately to march to the left solving successively for * I-112,j*n',I-I,j

	

3/2 j	 (1' 1	 1/2
• This procedure is repeated for each of the

	

,	 j *n',,j
N(N+2)/8 pairs of directions before the value of the first term or the right
of Eq. (54) is updated.

Reflected boundary conditions are handled in a manner analogous to other
discrete ordinate codes. If the reflected boundary is on the right the sweep
to the left is initiated using the last value calculated in the sweep to the
right:

*n',I+1/2,j = *n,I+1/2,j.
	 (58)

Conversely if the reflected boundary is on the left, the left (n') sweep is
performed first, and the sweep to the right (n) is initiated with the condition

*n,l,j =•n ,1j,

If reflected boundaries are present on both right and left, the line iteration
is initated using surface angular flux values saved from the previous upsweep.
Thereafter, the surface angular flux from the previous line iteration is used.

If a reflected boundary appears on the lower surface (i.e. at y112),

the values of Y 1/2 calculated in the preceding downsweep are used to start-ni,
the upsweep. If both upper and lower boundaries are reflected, then angular
flux values from the previous outer iteration are used to initiate either
upsweep or downsweep.

(59)
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11.5.

[1.1	 3gn

r-z Difference Equation

The discrete ordinate

1	 3	 3p -	 +

equations for y n in r-z geometry are6

lyn(p,z)	 + I(p,z)y n (p,z)	 = S(p,z)

C2n

(60)

where hereafter the radial (0 distance is denoted by p. The scattering source
is given by

S(p,z) = E s E wn„p n (p,z)	 (61)
Cn>0

In r-z geometry z is taken as the polar axis; hence the polar angle is cos-1C,
and the aximuthal angle is measured from the positive 0 axis. Thus

= (1 - C
2

)
1/2

cos co:	 n = (1 - C
2

)
1/2

sin w.	 (62)

For brevity we have written y and S in terms of r and St, realizing that
in r-z geometry

+
(63)

and Si is expressed in terms either of p or n or E and a). The flux, and hence
the emmision density, must be symmetric about w = 0:

Y(;,C,w) = Y(;,C,-w).
	

(64)

In what follows we first difference the w dependence of the streaming
term and carry through the appropriate angular discretization. We then apply
diamond differencing to the spatial variables to derive a solution algorithm.

Angular Discretization

For the discretization of the angular variables we choose a level
symmetric quadrature set 7 , where the directions are enumerated pairs of t p

. for i = 1 	 N/2. While full rotational symmetry is not requiredC.3

it is important to place the quadrature points on levels of constant n. about
the z axis, for only with such an arrangement is it possible to numerically
approximate the derivative with respect to a in Eq. (60) without the compli-
cationofdifferingvaluesn.entering into the expressions.

To facilitate the angular discretization we associate two indices with

each direction: SI
n 

+
pq

. The first index indicates the value C associated

with Si
n
 with C I < E 2 < C 3 <...< CN. The second index increases with the value

of p associated with C . Hence for fixedC
p
, p

pl 
< p

p2.
..< pN where N varies



aP
q+1/2 = aPq-1/2 

-
pq
w
pq'

p = 1,2...N
q = 1,2...N' (68)

	, 	 1/2IP	 = 1/2[4,	
+p,q-1/ 2 (r)]Pq	 pq+

p = 1,2...N
p = 1,2.. .N. (70)
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between 1 and N. This numbering scheme is illustrated schematically in
Fig. 5, where the ordinate points are projected on the 	 plane. In the

case where anisotropic transport is considered the angular multiplier, gn is a

function only of& n . Thus gn	gp.

We may now express the discrete ordinates approximation to Eq. (60) by
treating the angular derivative by the widely used a coefficient technique':

P
p 	  330 op ( 1.)	 g	

aP
q+1/2 p,q+1/2(r)	

a
-q-1/2p,q-1/2(r)] L

PW	
gpppq(r)

Pq

+	 (r) = s(;),
	 (65)

Pq

where the scalar flux is given by

= 1/4	 w * (r)
	

(66)
Pq
	 P q Pq

The differencing coefficients now carry a superscript p to indicate that they
are different for each level of at which the derivative with respect to w
is evaluated.

The criteria for determining the alphas are given elsewhere. 6 The results
are

aP	 = o,	 (67)
1/2

where

all/2 = 0
	 p = 1,2...N.	 (69)

Having determined the values of a l:44.112 we must now relate the half integer

angular flux values q) 	 to the values	 . We define the angular diamondp,q+1/2	 P9
difference approximation

Solving this equation for tii p,c0.1/2 , we insert the result into Eq. (65) to

eliminate 
IPp,q+1/2 

and obtain
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•
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•
3,1

•
3,2 3,3 374

•
3,5 73,6

. . . .
t 2 — 2,1 2,2 2,3 2,4

S
ti 1,1 1,2

Fig.	 5. Ordinate Numbering in r-z Geometry
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(aP
g
p 
_
.1!)pq

(;) + 2g -
q+1/2 ,	 q+1/2 

+ a
q-1/2 )

p,q-1/2
(=)

P Pw	
wpq	 61)	

Pw
Pq	Pq

v, pci ( -=) + opq (;) = qpq(;).	 (71)

Once typ,1/2 is known, Eqs. (70) and (71) may be solved for increasing

q. Two techniques are available for treating * p,1/2 . In the starting direction

method the transport is first solved in the directions u = -1 with 	 =

The alternative method used in DIF3D for initiating the calculation is to
use the step differencing approximation

p,1/2	 p,1
(;) .	

(it)	
(72)

which then may be utilized to initialize the solutions of Eqs. (71) and (70).

Spatial Differencing 

To spatially difference Eq. (71) we first divide the problems into an
r-z grid of cells whose boundaries are at p i+1/2 and zi+1/2 • Once again all

cross sections are taken to be piecewise constants, with changes of value
permitted only at the cell interfaces. Such a grid might appear as in Fig. 6.
We proceed by integrating the transport equation - Eq. (65) - over an
incremental volume whose boundaries are p i	 1/2 and z.

+ 1/2	
Hence the

j	 '
volume is given by

V	 = 27	 dz	 dp p = Az.7(p2+1/2 - p2i-1/2 ).
ji z i+1/2 f P1+1/2

z• -1/2	 Pi-1/2

	 (73)

We then apply the diamond difference approximation to the spatially discretized
equations. Following the convention that

j( P i+1/2	 zj-1/2

P i-1/2	 z3+1/2

dp	
EfPandfclz	

f
E.clz

j
	 (74)

the balance equation over the V. cell is then
i



pi,zi
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P i-A P i Pi*A

Fig. 6. Grid in r-z Geometry
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z)	 7P

	

g
p
p
pq 21rp 1+1/2	

(Ppq i+1/2'	 p pq- g P 2 i-1/2fjdz*(Pi.-1/2'z)

	

a P	op

+ g
q+112 

271 dPf.dz*	
q-1/2 

271 dpf.dz*
i	 3	 p,q+1/2
 (PS)	 g	 i	 p,q-1/2

(P
'
z)

	P w	 P w

	

Pq	Pq

+ g	 27 [f.dPP*	 (10,z.	 ) - fdPP,P pq
(P ' z j-1/2

)]	 E..27 1.dPraf.dz4,	(P,z)

	

pp	 1	 pq	 3+1/2	 13	 1	 j	 pq

	

= 27f.dPPf.dzS(P,z).	 (75)1

This equation can be simplified considerably through the judicious defini-
tion of terms. The volume averaged flux and emission density over V.. are

13

1
7-- 21Tf .dppl .dzt) (p,z),

	

pqi3	 1	 j	 pq
ij

1

	

S i .
 

=	 271 dPPf .dZS(P,Z) •
V	 J
ij

Similarly if we define the vertical surface area of V	 at P i+1/2 as
ij

A
i+1/2,j 

= 27P
1/2i

and the horizontal surface area as

= 1T(p 2 	 -p2	 )
1+1/2	 i-112

we may write the surface averaged fluxes over these areas as

and

= 27 r .
—	 (p,z.	 ).'P pqi,j+1/2	 B	 pq	 j+1/2

Finally, we define

27 
fdPf

j
dz*

p,q+1/2
(P

' z)*p,q+1/2,ii	 A1+1/2 - Ai-1/2

27
P i+1/2 f

pq,i+1/2,j - Ai:. idz*pq(P 1+1/2' 
z)

(76)

(77)

(78)

(79)

(80)

(81)

(82)
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and rewrite Eq. (75) as

-q+1/2 
g
p
p
pq

A
1+112,j*pq,i+112,j	 g p P pqA *pq,i-1/2,j	 gp w

Pq

OP
q-1/2 

(A
i+1/2,j 

- A
1-1/2,j )4)p,q+1/2,ij	 g p w	

(A
1+1/2,j 

- A
i-1/2,jp,q-1/2,ij

Pq

(83)+ V. .E y	 . = V j ijS.
gp CpBi*pqi,j+1/2	 gppBi*pqi,j-1/2	 ij ij pqij	

i

This equation contains seven flux values. If for known q we are to sweep
the space-angle grid in the direction of neutral travel, the values of y on
the surfaces over which the neutrons enter the cell can be assumed to be known.
Thus if p	 > 0 and	 > 0, then 

ypq,i-1/2,j 
and 

ypqi,j-1/2 
will be known.

Pq
Likewise the discrete form of the angular diamond difference formula,

y	 = 1/2(pqij	 *p,q-1/2,ij	 *p,q+1/2,1j)'

allowsy
p,q+1/2,ij 

to be eliminated from Eq. (83) by substituting

*p,q+1/2,ij = 2 *pqij	 *p,q-1/2,ij.

We have, after rearranging terms

gp /.1 pq Ai+1/2,j *pq,i+1/2,j	 gi:4qA1.-1/2,j*pq,i-1/2,j

2g aP	g (aP	+ aP	)
p q+1/2	 p q+1/2	 q-112 

.*	
,	 .) x

	

(A
i+1/2,j	

A
1-1/2, )j pqij	

(A1.+112. - A
,j	 i-1/2,j

Pq	Pq

= V• .S..(86)
p,q-1/2,ij	 gppBi*pqi,j+1/2	 gppBi*pqi,j-1/2	 VijEpqij

Equations (85) and (86) are the spatially discretized forms of Eqs. (70)
and (71). They are solved successively for increasing p. Before this can
be done, however, the fluxes from the outgoing p and z surfaces of the Vij

cell must be eliminated from the equation. To do this we utilize the spatial
diamond difference relationships:

(84)

(85)



= 1/2(th

	

'pq,i+1/2,j*pq,i-1/2,j)

pqij1/2(th

	

'pqi,j+1/2	 *pqi,j-1/2)

As in other geometries these equations are used in different combinations
for the four octants. Since for the upsweep we consider only the the case
where	 > 0, we rewrite Eq. (88) as

*pqi,j+1/2 = 2 *pqij	 *pqi,j-1/2

	

in order to eliminate	 from Eq. (86). Then for p	 < 0 we write*pqi,j+1/2	 PqEq. (87) as

	

=	 — *
*pq,i-1/2,j	 2* pqij	 pq,i+1/2,j.

to also eliminate*pqi-1/2j . Inserting these expressions into Eq. (86), we
obtain

" = (g IP 1(A	 + A	 )th	 + 2g 1E 113.*pqij	 p pq	 i+1/j	 i-1/2,j 'pq,i+1/2,j	 pl pi * pqi,j-1/2,j

—1
(aP	 + aP	+ NI	 1.+ w

pq	 —

	

(A
i+1/2,j	 11/2,j)g p q+1/2 	 q-1/2)* p,q-1/2,ij 	 ijSij

—1
I8pi Ppql (Ai+1/2,j	 Ai-1/2,j) 4-	 +2gpplBi	 wpq(Ai+1/2,j — Ai- 112,j ) x

(aP	+ aP	) + 
ij ij

V

	

>0 , p	 <0.q+1/2	 q-1/2	 Pq

Here Eq. (79) has been used to arrange the denominator so that the coefficients
are the same as in the numerator.

Similarly, for p pq > 0 we rewrite Eq. (87) as

*pq,i+1/2,j = 2 *pqij	 *pq,i-1/2,j	 (92)

and substitute this expression along with Eq. (89) into Eq. (86) to obtain

*pqij = (gp /I pq (Ai+1/2,j	 Ai-1/2,j ) *pq,i-1/2,j	 2gp	 Si*pqi,j-1/2,j

—1
+ w

pq
(A

i+1/2,j 
— A1_ 1/2, )8 (e+1/2

p q+1/2 + aPq-1/2 )
* p,q-1/2,ij

+ V . . S . x

(87)

(88)

(89)

(90)

(91)



(93)(ccPci+1/2 + a q-112
) + E .V..}

ii 13
> 0, u	 <0.

Pq
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) + 2g E B. + w
-1

(A	 ) x
gppq (A1+112,j	 Ai-112,j	 p p 1	 pq 1+112,j	 1-112,j

Solution Algorithm

While the performance of the upsweep in r-z geometry follows the procedure
in x-y geometry, the presence of the angular derivative term results in
some additional effort. The scattering source term appearing in Eqs. (91) and
(93) results from the discretization of Eq. (61):

S	 +	 (94)ij	 sij	
>0 Pq Pqii	 +ii.p

The upsweep source S	 is considered known since, as indicated in

Eq. (33), it consists of the group source and the $_(downward) component of

the scalar flux, which are calculated on the preceeding downsweep.

Referring to Fig. 6, we consider here only the case of vacuum boundaries.
Reflected boundaries on the top and/or bottom surfaces (i.e. at 2 112 or 2J+1/2)

are treated in a manner completely analogous to the (y 112 and YJ+1/2) surfaces

in x-y geometry. The symmetry condition at p 1/2 2 0 is treated within the

iterative scheme, while at the outer radius 
o1+1/2' 

a vacuum condition is
' 

normally imposed. An option of the case also allows for isotropic return
conditions at the outer radius.

Analogous to x-y geometry, the upsweep proceeds by calculating the angular
flux successively on the lines 2 1 , 23/2,

Z	 zj-1/2' zj' zj+1/2- The

values as 2 1/2 are known for the vacuum boundary condition

'Ppq,i,1/2 = O.
	

(95)

Once the values along a line of cell centers (i.e. at 2 j ) have been

determined, the diamond difference realtionship, Eq. (89) is used to calculate
thevaluesatzi+,12 internsofthoseatz.andz

j-1/2
 . Thus we need concern

J 
ourselves only with the solutions Eqs. (90) through (94), where the 4'pqi,j-1/2

in these equations have already been determined. Equations (90) through (94)
are solved iteratively using "inner-inner" or "line" iterations. Analogous to
x-y geometry, the line iteration is initiated by guessing the first term on the

right of Eq. (94).

11.6 Triangular Geometry Difference Equations

The starting point for the triangular geometry is the two-dimensional
discrete ordinates equation in the x-y plane,
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,..
ni

(a)
	

)b)

Fig. 7. Triangle Orientations
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an .	 + E() * () = s(=).
	 (96)

with piecewise constant cross sections, we require that the 7: = -; ( x,y) domain
of the problem be divided into a grid of equilateral triangles such that the
cross sections change values only along the boundaries between triangles.

Spatial Discretization 

Consider a particular equilateral triangle, with area A, side Length L, and
outward normals to these sides of n 1 , n2 and n 3 as indicated in Fig. 7.

Integrating over the area of the triangle and applying the divergence theorem to
the gradient term, we obtain

3

n

• n i1 idL4n() + E1 AdAy n (1) = fAdAS(),
i=1 

where f 4 indicates the integral over the length L of the side i. Defining
area an edge averages as

1
= - fdA* (;),

A	 n

(97)

(98)

=	 fdAS(P)
A

(99)

and

*ni =	 1idLion(40,	 (100)

we may write Eq. (97) as

3
E	 L

Ci n .n i A
	 -
	

(101)

i= 1

This balance relationship is utilized to develop a spatial differencing
scheme" that allows us to sweep through the triangular mesh in the directions
of neutron travel. Viewing Fig. 7, however, it is immediately obvious that two

different situations must be treated. In Fig. 7a, 0 n .n
1
<0, 12n .n 2<0. Hence

yni and yn2 are fluxes of neutrons entering the cell and may be assumed to be

known. Thus only one auxiliary relationship is needed to supplement Eq. (101)

in determining yn and yo . For this purpose, the following triangular

generalization of the diamond difference formula is perfectly adequate.

'n	 3 (*nl + *n2	 * n3 )-= -
1
	

(102)
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In the orientation of Fig. 7b, however, only fi n .n 1 <0, and the only known

incoming flux is 9. Hence Eq. (101) and (102) are insufficient for

determining* n , * 112 and * n3 , and we must look for an additional relationship.

This may be accomplished as follows.

Suppose that instead of dealing with only four flux values per triangle,
as in the foregoing discussion, we deal with five values as indicated for the
two orientations shown in Fig. 8. Thus for a triangle in which the neutrons
enter across two sides, the five flux values consist of the average incoming
flux and the fluxes at the two ends of the face across which neutrons leave.
Conversely, for a triangle in which neutrons enter across only one face, we
use the fluxes at the ends of that edge and the average flux values across the
two edges through which neutrons leave the triangle. In each case two of the
flux values are known, and when * n is included three must be determined.

Moreover since any triangular grid can be expressed by pairs of such triangles,
with adjoining edges over which the corner flux must be determined, such a
scheme will allow sweeping through the grid in the direction of neutron travel.

To proceed, we represent the angular flux distribution in a triangle by

* n(x,y) z an + bnx + cny.
	 (103)

With the origin of a local coordinate system at the centroid and the orientation
shown in Fig. 9, we may write this interpolation on the average edge fluxes
as

*nl *n2 *n31
+	 (** )x + 	 L (2* n1 — * n2 — * n3 )Y- ( 104 )*n (x ' Y)	 3	 L	 n3	 n2

By integrating over the triangle it is easily shown that Eqs. (101) and (102)
remain valid. In addition, suppose we define the flux at the vertex opposite

side i as 
ITni. From Eq. (104) it follows that

Tni = 311) n 
—29 ni .	 (105)

These auxiliary relationships taken together with Eqs. (101 ) and (102 )
allow us to determine the cell average fluxes along with the necessary outgoing
flux values.

For the case shown in Fig. 8a, where the flux is entering across two
edges, eliminating * n3 between Eqs. (101) and (102) yields

*n

	 (!n3"Q n 1	 Inl.C2n1)*nl	 (In3'
0
n

1
	 in2.n1)*n2 + AS/L

(31n.S1	 + EA/L)
3n 

	 (106)



(a) (b)

41n1

tlin3
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Fig. 8. Flux Nomenclature for Triangular Grid

(0. /3 L/3)

Fig. 9. Triangular Node Numbering
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To obtain the outgoing flux values, i n]. and Tn2 , we simply use Eq. (105) with

i = 1 and 2.

For the orientation in which the neutrons enter the triangle through only

one face as shown in Fig. 8b, we know the values only of -11: 112 and Tito . Then,

however, we also know the value of Ipnl , for since according to Eq. (104) the

flux along any edge is linear we may write

*nl = 1/2(Tn2	Tn3).
	 (107)

By inverting Eq. (105) we may also write

= 1/2(4 -n Tni) i = 1,2.	 (108)

Substituting thee three relationships into Eq. (101), we can solve for tpn in

terms of 11;112 and ITn3:

(In l' Qn 1	 tn2'0r11)*n2	 (Inl.an' + In
3 .Q 11 1)*n3 + 2ASn/L

(31n3 .%1 + 31113 .S2 n i + 2EA/L)

Thus this equation, along with Eq. (105), allows us to solve for the cell
averaged and the outgoing flux values.

Note that while Eq. (104) specifies the flux as linear within the
triangle, it says nothing about the continuity across the triangle's edges.
Indeed, the flux is only forced to be continuous across the outgoing interface
in triangles oriented as in Fig. 8a and across the incoming interface for
those oriented as in Fig. 8b. The flux across the other two edges of the
triangle is forced to be continuous only at the midpoint of the interface.

Solution Algorithms 

The triangular geometry transport equation is solved using the same two-
cyclic "up-down" overrelaxation techniques with the line inner iteration as
applied in x-y and r-z geometry. The sweeping of the line and the treatment
of reflected boundary conditions is made somewhat more complex, however, by
the nonorthoganality of the grid.

Two geometries are considered: the 60 and 120 degree parallelogram shown
in Fig. 10. Figure 10a and 10b normally correspond to 1/6 and 1/3 core calcu-
lations respectively, with reflected conditions on the bottom and left, and
vacuum conditions on the top and right. Half and whole core configurations can
also be treated by changing one or both of the reflected to vacuum conditions.

*0
(109)



(a) 1/6 Core
	

(b) 1/3 Core

Fig. 10. Triangular Grid Domains
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To satisfy the reflected boundary conditions sixth fold symmetric
quadrature sets from the DIAMANT2 code l ° are used. For a triangular SN
calculation there are a total of 3N(N+2)/4 values of 0n; the projection of the
18 values for an S4 calculation are projected onto the x—y plane in Fig. 11.
Since we shall consider only the upsweep for illustrative purposes, we are
concerned only with 0 	 through n=9 in the S4 notation of Fig. 11.

To examine the upsweep consider first the configuration of Fig. 10a with
all vacuum boundaries. The upsweep is carried out with one horizontal row at
a time. Within each row a line inner—inner iteration is again carried out,
updating the upward directed flux 4 after each line iteration until a
specified level of convergence is reached. In triangular geometry the
scattering source for the upsweep at a particular point is given by

S = 2 E
ij	 xij	 wn'nij	 S+ij'

n
n
>0

where *nij is just the *n given in the foregoing equations and ij are the

triangles row and column numbers respectively.

To update theP
	

values a three—fold sweep of the horizontal row of
1nij

triangles is carried out. 	 sweep direction is dependent on the orientation

of the neutron direction 00 as indicated in Fig. 12. In each of the orienta-
tions the flux values along the lower horizontal line are known along with
those along the right (or left) surface for which the neutrons enter. The
sweep is carried out in the progression indicated by the numbers. In the
unshaded triangles the incoming neutrons enter across two boundaries. Therefore
Eq. (106) is used to calculate the flux at the triangles center in terms of
those at the edge midpoints (indicated by parallelograms). Equation (105) is
then used to calculate the flux at two of the triangles vertices (indicated by
the solid circles). Since the flux is not continuous at the vertices across
the boundaries on which only the midpoint fluxes are calculated, more than one
node number is assigned per triangle vertex.

In the shaded triangles the neutrons enter through only one face. The
flux value at the triangle center is calculated from Eq. (109) in terms of the
vertex flux values lying in the triangle from which the neutrons came. Then
Eq. (108) is used to calculate the flux values at the midpoints of the two
faces through which the neutrons exit the triangle.

In situations where there are reflected boundary conditions along the
lower and or left hand edge, the treatment is the same as in x—y geometry with
a major exception. When a reflected boundary condition occurs on the left,
some of the upsweep neutrons are reflected into the down sweep and vice versa.
Thus the outgoing angular flux values must be saved from the preceeding up or
down sweep.

The 1/3 core configuration shown in Fig. 10b is treated by internally
redefining the problem in the same configuration as 10b. This is done by
interchanging left and right boundary conditions in Fig. 10a and numbering the
triangles from right to left.
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Fig. 11. Ordinate Array
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Fig. 12. Triangular Grid Sweeps
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Consistent with the DIF3D diffusion option in triangular geometry the
transport code can handle different numbers of triangles in each line so that
it is not necessary to use filler triangles to complete the parallelogram. It
is assumed that all boundary conditions are vacuum except the lower horizontal
boundary and the left boundary in Fig. 10 a or b.

III. PROGRAM INFORMATION

111.1. Modifications of the DIF3D Structure

Most of the subroutines of DIF3D are unaltered by the transport
option since only the within—group calculation of the scalar flux is changed.
There are four modified subroutines: ORTFDC, TRIFDC, INNER1 and ORPES1.

ORTFDC and TRIFDC calculate the necessary difference coefficients
to carry out the within—group scalar flux calculations for orthogonal and
triangular geometries, respectively. These are changed to calculate the
necessary difference coefficients for the S N equations. They also include
the angular quadrature data for S 2 through S 16 approximations in x—y and r—z

geometry and the S 2 through S
8
 in the triangular geometry. ORTFDC includes

the calculation of the necessary coefficients for performance of SN
calculations consistent with anisotropic diffusion theory, and an option
allows user angular quadrature sets to be input through subroutine SNANGL.

IN2tER1 performs the within—group iterations to obtain the group
scalar flux distribution in terms of the boundary conditions and group source.
As such, it has been modified extensively in order to perform the up—down SN
iterations. To perform an up—down iteration INNER1 calls a different sub-
routine in each geometry. One up—down iteration is performed by ITRNXY in x—y
geometry, by ITRNRZ in r—z geometry and by ITHEX in triangular geometry. Each
of these three subroutines in turn calls another subroutine to perform the
"inner—inner" or "line—inner" iteration at each level of the up or down sweep.
ITRNXY calls IXLINE, and ITRNRZ calls IRLINE; ITHEX calls IULINE and IDLINE
respectfully during the up and down sweeps.

ORPES1 controls the calculation of optimized overrelaxation
factors for the within—group iterations. Only minor modification are required
in this subroutine, since the bulk of the calculation is carried out in the
repeated ORPES1 call to INNER1.

111.2. Input Specifications

The DIF3D transport option calculations are made using the same
input as for DIF3D diffusion with the exception that for transport one "PRELIBs"
to C116.899983.MODLIB. This library contains the transport option of DIF3D;
there are no other load modules in it.

1With no other changes, a default S4 calculation is provided.
To change the Sn order, an A.DIF3D type 09 card must be included, See Fig.
13. This card also allows one to modify the convergence criteria and maximum
number of sweeps for the "inner—inner" or "line—inner" iteration referred to
in Section 11.3.
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C	
CR	 SN TRANSPORT OPTIONS (TYPE 09)

	 -

C
	 -

CL	 FORMAT	 (12,4X,216,6X,E12.4)
	 _

C
	 -

CD	 COLUMNS	 CONTENTS.. .IMPLICATIONS, IF ANY
	 -

CD
CD	 1-2	 09
	 _

CD
	 -

CD	 7-12	 SN ORDER.	 -

CD
	 _

CD	 13-18	 MAXIMUM ALLOWED NUMBER OF LINE SWEEPS PER LINE PER
CD	 INNER ITERATION (DEFAULT=10).
CD
CD	 25-36	 LINE SWEEP CONVERGENCE CRITERION (DEFAULT = 1.0E-4).	 -

C	 -

CN	 TO INVOKE THE DIF3D TRANSPORT OPTION, THE TYPE 09 CARD -

CN	 MUST BE PRESENT WITH A NONZERO SN ORDER. FOR THE TIME -

CN	 BEING, USERS MUST ALSO CONTINUE TO 'PRELIB' TO	 -

CM	 DATASET 'C116.B99983.MODLIB' TO INVOKE THIS OPTION. 	 -

C

Fig. 13. Type 09 Card Image

-
-
-
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111.3. Geometrical Restrictions

The transport option of DIF3D performs calculations only in

two—dimensional x—y, r—z and triangular geometry. These correspond to

geometries 40, 50 and 70 or 74 on the A.NIP3 type 03 card. Pseudo one—

dimensional calculations in slab (or cylindrical) geometry can be performed as

follows. Simply make the cross sections y (or z) independent in x—y (or r—z)

geometry and utilize reflected boundary conditions on the upper and lower y

(or z) boundaries. With one exception, the transport option of DIF3D will

accept only zero flux and reflected boundary conditions from the standard

DIF3D input file; zero flux boundary conditions are interpreted as vacuum

boundary conditions in the S N calculations. The exception is the isotropic

return boundary condition which may be used on the outer radius of a r—z

calculation. This is done by specifying a type 6 boundary condition on A.NIP3

type 04 card.

There are several restrictions on the combinations of boundary

conditions that may be used in the transport options of DIF3D. In r —z geometry

there must be either a zero flux (i.e. vacuum) or isotropic return boundary

condition at the outer radius. The r—z boundary condition at p = o is

determined by the code from symmetry conditions, and therefore the input

condition is ignored. In the two operational triangular geometries (70 and 74

on the A.NIP3 type 03 card) the right and top boundaries must be zero flux

(i.e. vacuum).

It is important to be aware that in fully reflected systems the

overrelaxation used to accelerate the within—group iterations becomes unstable.

Therefore if all reflected or reflected and isotropic return boundary condi-

tions are employed, one must use Gauss —Seidel iterations and expect slower

convergence. This may be accomplished by inserting an overrelaxation factor

of 1.00037 for each energy group on the A.DIF3D type 07 card.

111.4. Recalculations of Overrelaxation Factors

The cost incurred in calculating optimized overrelaxation factors

may be comparable to several outer iterations. Thus it is sometimes

advantageous to reuse overrelaxation factors from previous similar calculations,

provided it is known that the factors do not change considerably from one

calculation to another. To make such judgments the following rules of thumb

may be helpful.

In general the S N overrelaxation factors will be substantially

smaller than those for the same problem run in the diffusion approximation.

Thus it is inappropriate to use overrelaxation factors from a diffusion

calculation in a transport calculation. Likewise it is often found to be

computationally more efficient to use a larger error reduction factor on the

within—group iterations convergence when S N calculations are carried out.

An increase in this factor by an order of magnitude over the diffusion default

value on A.DIF3D type 06 card is recommended, for this often leads to increased

computational efficiency.
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The overrelaxation factors are quite insensitive to the S N order
and to the spatial grid spacing. Therefore the same overrelaxation factors
may often be used while refining the space—angle discretization of the problem.
The overrelaxation factors are somewhat more sensitive to the multi—group
structure; generally they decrease as the group structure is refined.

111.5. Idiosyncrasies of SN Codes

There are several pitfalls found in using S N codes that do not
appear in diffusion theory calculations. Some of these are generic to most or
all SN codes while others may be unique to the overrelaxation procedure used
in the DIF3D transport option. Probably the two most important generic
pitfalls relate to increasing the S N order and to ray effects. More extensive
discussions of these two problems may be found in standard texts on transport
computational methods such as Ref. 6.

SN ORDER REFINEMENT may not be carried out indefinitely without
also refining the spatial mesh. Otherwise the truncation error in the space —
angle differencing schemes becomes very large and negative scalar flux values
or other nonphysical behavior may appear. The transport option of DIF3D,
unlike some other SN codes, has no negative flux fixup. Rather, the appearance
of negative scalar flux values should serve as an indication that the spatial
truncation errors may be significant. Conversely, it is always permissable
to refine the spatial grid without increasing the S N order. In effect such
spatial refinement is a straightforward way to cheek whether unacceptable
spatial truncation errors are present at a given S N order.

RAY EFFECTS are anomalous wiggles that sometimes appear in the
scalar flux distribution of S N calculations. They are most likely to occur
in situations where the group—source is localized and the ratio of within—group
scattering to total cross sections is small. Therefore they tend to be a
problem more in shielding than in core problems. Moreover their effects on
integral parameters such as reactivity or region—averaged powers tend to be
minimum. Nevertheless they have been known to occur. The greatest danger
occurs when point flux values are used without making plots of the spatial
distributions, for then it is likely that they will not be recognized.

If spatial flux plots reveal wiggly behaviors that is thought to
be of suspicous origin, two tests may be applied to determine whether the
oscillations are ray effects. First, a diffusion run may be carried out for
the same problem; if the wiggles do not vanish completely, then they are real

effects. Second, a higher order S N calculation (with refined spatial mesh)
may be carried out. If the wiggles decrease in magnitude and increase in
frequency they are ray effects. If they are insensitive to the S N order,
they are real effects. In general there are no cheap and easy ways to eliminate
ray effects; there does exist an extensive literature on the subject.6

111.6. Idiosyncrasies of DIF3D

On occasion difficulties may arise from the use of unaltered
diffusion data files in the DIF3D transport option. These often are due to
the nonphysical filler cross sections used in background regions, and in the
thermal group of fast reactor calculations and to the group and region dependent
transverse bucklings sometimes used in x—y and triangular calculations.
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BACKGROUND REGION cross sections are often chosen arbitrarily or
to increase the convergence rate of diffusion calculations. This often means
that artificially larger total cross sections (i.e. small diffusion
coefficients) are used. This however does not lead to increased convergence
of the S N calculation, and indeed the large spatial truncation errors may
distort the solution near the boundaries. Convergence of S N solution may be
increased by maintaining a reasonable value of the total cross section (i.e.
diffusion coefficient) but by decreasing or even eliminating the scattering
cross section.

THERMAL GROUP calculations tend to converge very slowly in SN
calculations due to ratios of scattering to total cross section that often
approach one. Thus if the thermal group does not effect the remainder of the
calculation significantly, convergence can be accelerated by using an
artificially small ratio of scattering to total cross section in the thermal
group (no within-group thermal scattering is ideal).

TRANSVERSE BUCKLINGS derived from diffusion calculations tend to
underestimate leakage, and in some cases may be negative in the lower energy
groups. If the effects of such leakages are of large magnitude, they may
create difficulties for the S N difference equations, particularly when they
are used in conjunction with artificial cross sections in the thermal energy
group. One extreme case has been recorded where the thermal energy group in
an SN equation became unstable for this reason.
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Appendix A

Table A-1
Discrete ordinates: weights and ordinates

S
2

w
n /.'n In

1.0000000 0.5773503 0.5773503

S
4

w
n /In In

0.3333333 0.9044490 0.3016388
0.3333333 0.3016388 0.9044490
0.3333333 0.3016388 0.3016388

S
6

w
n /.'n In

0.1694466 0.9455768 0.2300919
0.1638868 0.6881343 0.6881343
0.1694466 0.2300919 0.9455768
0.1638868 0.6881343 0.2300919
0.1638868 0.2300919 0.6881343
0.1694466 0.2300919 0.2300919

S 8 	 w
n /An In

0.1167884 0.9622995 0.1923275
0.0932552 0.7935218 0.5773503
0.0932552 0.5773503 0.7935218
0.1167884 0.1923275 0.9622995
0.0932552 0.7935218 0.1923275
0.0901032 0.5773503 0.5773503
0.0932552 0.1923275 0.7935218
0.0932552 0.5773503 0.1923275
0.0932552 0.1923275 0.5773503
0.1167884 0.1923275 0.1923275
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11
n 11 n

0.0898420 0.9708020 0.1696223
0.0672887 0.8450061 0.5071419
0.0557801 0.6968602 0.6968602
0.0672887 0.5071419 0.8450061
0.0898420 0.1696223 0.9708020
0.0672887 0.8450061 0.1696223
0.0531338 0.6968602 0.5071419
0.0531338 0.5071419 0.6968602
0.0672887 0.1696223 0.8450061
0.0557801 0.6968602 0.1696223
0.0531338 0.5071419 0.5071419
0.0557801 0.1696223 0.6968602
0.0672887 0.5071419 0.1696223
0.0672887 0.1696223 0.5071419
0.0898420 0.1696223 0.1696223

S
12	

w
n

11 
n

n 
n

0.0733218 0.9760093 0.1539575
0.0526674 0.8756803 0.4576911
0.0416149 0.7622583 0.6286966
0.0416149 0.6286966 0.7622583
0.0526674 0.4576911 0.8756803
0.0733218 0.1539575 0.9760093
0.0526674 0.8756803 0.1539575
0.0389567 0.7622583 0.4576911
0.0324902 0.6286966 0.6286966
0.0389567 0.4576911 0.7622583
0.0526674 0.1539575 0.8756803
0.0416149 0.7622583 0.1539575
0.0324902 0.6286966 0.4576911
0.0324902 0.4576911 0.6286966
0.0416149 0.1539575 0.7622583
0.0416149 0.6286966 0.1539575
0.0389567 0.4576911 0.4576911
0.0416149 0.1539575 0.6286966
0.0526674 0.4576911 0.1539575
0.0526674 0.1539575 0.4576911
0.0733218 0.1539575 0.1539575
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0.0541543 0.9820308 0.1334457
0.0367965 0.9105818 0.3911943
0.0277727 0.8330270 0.5368969
0.0258028 0.7474682 0.6507561
0.0258028 0.6507561 0.7474682
0.0277727 0.5368969 0.8330270
0.0367965 0.3911943 0.9105818
0.0541543 0.1334457 0.9820308
0.0367965 0.9105818 0.1334457
0.0249427 0.8330270 0.3911943
0.0196232 0.7474682 0.5368969
0.0187976 0.6507561 0.6507561
0.0196232 0.5368969 0.7474682
0.0249427 0.3911943 0.8330270
0.0367965 0.1334457 0.9105818
0.0277727 0.8330270 0.1334457
0.0196232 0.7474682 0.3911943
0.0154480 0.6507561 0.5368969
0.0154480 0.5368969 0.6507561
0.0196232 0.3911943 0.7474682
0.0277727 0.1334457 0.8330270
0.0258028 0.7474682 0.1334457
0.0187976 0.6507561 0.3911943
0.0154480 0.5368969 0.5368969
0.0187976 0.3911943 0.6507561
0.0258028 0.1334457 0.7474682
0.0258028 0.6507561 0.1334457
0.0196232 0.5368969 0.3911943
0.0196232 0.3911943 0.5368969
0.0258028 0.1334457 0.6507561
0.0277727 0.5368969 0.1334457
0.0249427 0.3911943 0.3911943
0.0277727 0.1334457 0.5368969
0.0367965 0.3911943 0.1334457
0.0367965 0.1334457 0.3911943
0.0541543 0.1334457 0.1334457
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